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The heterogeneous growth curve model (HGM; Klein & Muthén, 2006) is a method for
modeling heterogeneity of growth rates with a heteroscedastic residual structure for the slope
factor. It has been developed as an extension of a conventional growth curve model and a
complementary tool to growth curve mixture models. In this article, a robust version of the
heterogeneous growth curve model (HGM-R) is presented that extends the original HGM
with a mixture model to allow for an unbiased parameter estimation under the condition
of nonnormal data. In two simulation studies, the performance of the method is examined
under the condition of nonnormality and a misspecified heteroscedastic residual structure. The
results of the simulation studies suggest an unbiased estimation of the heterogeneity by the
HGM-R when sample size was large enough and a good approximation of the heteroscedastic
residual structure even when the functional form of the heteroscedasticity was misspecified.
The practical application of the approach is demonstrated for a data set from HIV-infected
patients.

The analysis of longitudinal data with latent growth curve
models (LGM) has become a common practice in the behav-
ioral and prevention sciences, and in educational research
(Bollen & Curran, 2006; Duncan, Duncan, & Strycker, 2006;
Muthén & Curran, 1997). The application of a growth curve
model is often motivated by two kinds of purposes: (a) the
modeling of a growth process that depends on certain covari-
ates, such as student learning curves depending on socioeco-
nomic status, or (b) a prediction of individual future growth
based on information about the individual starting condi-
tions (Choi and Seltzer, 2010; Rogosa & Willett, 1985). The
modeling of growth processes is concerned with relation-
ships among growth factors and covariates. For instance,
Parrila, Aunola, Leskinen, Nurmi, and Kirby (2005) ana-
lyzed the development of English reading skills in elemen-
tary school students and showed that the slope factor was
negatively associated with initial status: children with higher
reading skills at the onset grew at a lower rate than children
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Brandt, Eberhard Karls Universität Tübingen, Hector Research Institute
of Education Sciences and Psychology, Europastr. 6, D-72072 Tübingen,
Germany. E-mail: holger.brandt@uni-tuebingen.de

with lower initial reading skills. In recent years, several ex-
tensions have been developed that focus on different aspects
of modeling growth rates in the LGM framework (Flora,
2008; Grimm & Ram, 2009; Muthén & Asparouhov, 2009;
Palardy & Vermunt, 2010; Wang & McArdle, 2008; among
others).

Besides the modeling of relationships for the growth fac-
tors, the LGM models interindividual variation in growth. In
particular, the variance of the slope factor reflects interindi-
vidual differences in latent growth. Covariates can be used
to explain these differences. When the prediction of an in-
dividual future outcome is of research interest, covariates
that can account for this variance are particularly impor-
tant (Choi & Seltzer, 2010; Rogosa & Willett, 1985; Seltzer,
Choi, & Thum, 2003). But also, the accuracy of such a pre-
diction depends on the width of prediction intervals for future
outcomes, which in turn largely depends on the conditional
variance of the slope factor given the information at the first
measurement occasion—including (baseline) covariates and
the first of the repeated measures—that characterize the ini-
tial status of a participant. If that conditional variance is
small, a prediction given information about the initial sta-
tus can be made with higher precision and interindividual
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THE HGM FOR NONNORMAL DATA 417

differences in the slopes of the growth trajectories are
small.

A standard growth model with one group assumes nor-
mally distributed growth factors. This includes the assump-
tion of a homoscedastic variance for the slope factor given
initial status, and hence, growth trajectories are assumed
to vary homogeneously. Thereby, it is implicitly assumed
that the prediction intervals for future outcomes have similar
width across all participants. For some empirical data sets,
however, it is plausible to expect a heteroscedastic variance
of the slope factor, which means that the variance of the slope
factor changes across initial status levels of the participants.
As a consequence, the dispersion of the growth trajectories
is heterogeneous and the precision of a prediction changes
across participants. For example, in the study by Parrila et al.
(2005) about English reading skills, participants with a high
initial score on word identification showed a smaller vari-
ance in their growth trajectories compared to participants
with low initial scores. In general, in data sets where the
individual growth patterns vary considerably with the par-
ticipants’ initial characteristics, heteroscedasticity may be an
issue, such as, in studies concerning the development of skills
(Parrila et al., 2005) or criminal behavior (e.g., Muthén & As-
parouhov, 2009). If a heterogeneity of the growth trajectories
is not taken into account by a model, parameter estimates
should still be consistent, but presumably not efficient, and
the prediction intervals for future outcomes may be less re-
liable (for regression models cf. White, 1980). If a standard
model with a homoscedastic variance structure is applied,
prediction intervals may be too wide for some participants
and too narrow for others, whereas the variance of the slope
factor might in fact be heteroscedastic.

Models for Heterogeneous Growth Patterns

Two extensions of the LGM exist that can capture possible
heterogeneity of the variance of the growth trajectories: the
growth curve mixture modeling approach (GMM; Meredith
& Tisak, 1990; Muthén, 2001, 2004; Muthén & Asparouhov,
2009) and the heterogeneous growth curve model (HGM;
Klein & Muthén, 2006). The GMM assumes that different
latent classes may exist that can be distinguished by their
growth patterns. For each class a separate LGM with class-
specific variances and means for the growth factors as well
as class-specific relationships among the growth factors can
be estimated. Often, the latent classes are interpreted as sub-
groups (“direct application,” cf. Borsboom, Mellenbergh &
van Heerden, 2003; Dolan & van der Maas, 1998; Tittering-
ton, Smith, & Makov, 1985). The distinct growth patterns that
are extracted by the GMM are then interpreted as patterns
that are related to characteristics of distinct subgroups of a
population. Contrary to the GMM, the HGM does not assume
discrete classes, but models a heteroscedastic residual struc-
ture for the slope factor by a continuous parametric function.
The conditional variance of the slope factor is permitted to
systematically change depending on the initial status.

Both the GMM and the HGM have conceptual strengths
and weaknesses. The advantage of the GMM is its general
flexibility due to the latent class concept. A variety of dif-
ferent types of heterogeneous growth patterns can be de-
scribed by the model without strong parametric assump-
tions about the heterogeneity. But with this flexibility two
problems may arise. First, different causes of heterogeneity
of the growth trajectories (e.g., nonnormal distributions of
growth factors, unobserved subgroups, or nonlinear relation-
ships among the growth factors) are all modeled with the
same modeling strategy—the latent classes—and, as a con-
sequence, these causes may not be easily separated. Bauer
and Curran (2003) showed that a violation of the distribu-
tional assumptions (nonnormality of the latent factors) may
result in an overextraction of latent classes. These classes
should then not be interpreted directly as subgroups with
distinct growth patterns. Class-specific parameter estimates
may not refer to parameters in subgroups of a population
model, but may only be artifactual. However, even when an
overextraction occurs, the GMM may still be applied “indi-
rectly,” as it is common in the mixture modeling framework
in general (McLachlan & Peel, 2000). In this case, class-
specific model parameters are not interpreted for each class
separately, but only across classes. Mixture models are then
only used as a statistical means to approximate, for example,
nonnormal distributions (Kelava & Nagengast, 2012; Kelava,
Nagengast, & Brandt, 2014; McLachlan & Peel, 2000; Wall,
Guo, & Amemiya, 2012) or nonlinear relationships (Bauer,
2005; Pek, Sterba, Kok, & Bauer, 2009). Second, if the GMM
is applied (indirectly) in order to model heterogeneity in
the growth trajectories, the precision with which the het-
eroscedasticity can be approximated by the semi-parametric
class model depends on the number of latent classes. With a
small number, the model may be imprecise. With increasing
numbers of classes, precision increases at the expense of the
model parsimony.

The advantage of the HGM is that heterogeneous vari-
ances of the growth trajectories are modeled by a continuous
function. The HGM is a parsimonious model: in comparison
to a standard LGM, only few additional parameters need to
be added to account for the heterogeneity. In comparison to
the GMM, the HGM is more parsimonious because it needs
fewer parameters to model the heterogeneity,1 though some
limitations of the HGM need to be mentioned. First, the orig-
inally proposed quasi-ML estimator for the HGM is equiv-
alent to the QML approach (Klein & Muthén, 2007), which
has been shown to be sensitive to nonnormality (Brandt,
Kelava, & Klein, 2014; Marsh, Wen, & Hau, 2004). This
may lead to an over- or underestimation of the heterogene-
ity of the growth trajectories. Second, the model has only

1For a minimal growth model that only includes two growth factors, the
HGM has two additional parameters compared to the LGM [see Equation
(4)]. A minimal 2 class GMM needs at least 2 additional parameters (one
class-specific model parameter and a mean for the latent-class variable), but
typically a GMM involves more parameters.
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418 BRANDT AND KLEIN

been implemented in experimental software in Delphi Pascal
code for a specific model. Up to the present, the HGM has
not become generally accessible to the scientific community.
Third, the population model for the heteroscedastic residual
structure is typically unknown and could be different from
the parametric function used in the HGM (cf. White, 1980).
The possibility of approximating heteroscedasticity of other
functional forms using the HGM has not been examined yet.

In this article, we provide an extension of the origi-
nal HGM that accounts for nonnormally distributed data.
Nonnormal latent distributions are approximated using a
mixture model that allows for unbiased estimation the pa-
rameters of the heteroscedastic variance component. We sug-
gest directly estimating the model by using the expectation
maximization algorithm (Dempster, Laird, & Rubin, 1977)
that provides ML estimates for the parameters. We imple-
ment the model in the Mplus software (Muthén & Muthén,
1998–2012), which allows incorporation of covariates; this
extends the original software implementation of the model by
Klein and Muthén (2006). In a simulation study, we investi-
gate the robustness of the method to nonnormally distributed
data and misspecified heteroscedasticity. The application of
the model is illustrated with an empirical data set.

The article is structured as follows. In the next section,
we provide the model formulation for the extended robust
heterogeneous growth curve model (HGM-R) for nonnormal
data. Then, we provide information about model estimation
and model fit. We demonstrate the robustness of the HGM-R
in situations where distributional assumptions are violated
in the simulation section. Further, we illustrate the HGM-
R using a data set from HIV-infected patients. Finally, we
discuss the limitations and potential applications of the new
method.

THE HETEROGENEOUS GROWTH CURVE
MODEL

In this section, we extend the model for the HGM as it was
given by Klein and Muthén (2006) to the HGM-R by a mix-
ture model for the latent intercept factor. This extension al-
lows us to consider arbitrary distributions for the latent inter-
cept factor that lead to unbiased estimation of the parameters
of the heteroscedastic variance component when data are
nonnormally distributed. The extension can be viewed as an
indirect application of a mixture model. For cross-sectional
SEM with interaction and quadratic effects a similar model
has been proposed by Kelava and Nagengast (2012) and
Kelava et al. (2014).

Measurement Model

The measurement model for the observed variable vector
yi = (y1i , . . . , yT i) for participant i measured at occasion t =
1, . . . , T , with two latent growth factors η0i , η1i and latent

classes Ci = 1, . . . , C∗ is given by

yi |Ci=c = �i(η0i , η1i)
′ + εi , (1)

where η0i and η1i typically represent the latent inter-
cept and slope factors of the individual growth, and εi =
(ε1i , . . . , εT i)′ is a residual vector of yi . The residuals are
assumed to be independent of η0i and η1i , and mutually
uncorrelated. They are assumed to be normally distributed
with zero means and variances θtt . The interpretation of the
growth factors depends on the matrix �i that includes the
time-related growth scores λtji (time scores). Usually, the
same functional type of trajectories is assumed for all partic-
ipants (�i = �), and time scores are fixed in order to model
the specific form of growth (e.g., λ11 = . . . = λT 1 = 1 for
an intercept factor and λ12 = 0, λ22 = 1, λ32 = 2, . . . for a
linear slope). Some time scores can be estimated freely (e.g.,
λ32) in order to identify the functional form of the growth
trajectories. Alternatively, individually spaced time scores
λtji can be used to account for imbalanced measurement
occasions (Palardy & Vermunt, 2010). Different functional
forms of the growth trajectories may not only lead to differ-
ent interpretations of the growth factors themselves but also
to different parameter estimates (e.g., for the relationship
among the growth factors; Biesanz, Deeb-Sossa, Papadakis,
Bollen, & Curran, 2004; Rovine & Molenaar, 1998). Hence,
parameters always need to be interpreted contingent upon the
selected time scores.

Structural Model

The structural model for the initial status η0i and the slope
factor η1i is given by

η0i |Ci=c = β00c + β02wi + ζ0i

η1i |Ci=c = β10 + β11η0i + β12wi + ζ1i , (2)

where β00c, β10 are the intercepts of the latent growth fac-
tors η0i and η1i , β11 and β12 are the effect parameters of the
impact of η0i and wi on η1i , β02 is the effect parameter of
the impact of wi on η0i , and ζ0i and ζ1i are residual terms.
The observed covariatewi is assumed to be a baseline covari-
ate; it is assumed to be time-invariant and measured at t = 1.
An extension to more than one covariate is straightforward.

In contrast to the original HGM formulation (Klein &
Muthén, 2006), the intercept factor in the HGM-R is concep-
tualized with a specific mixture model. This mixture model
allows to approximate arbitrary distributions of the intercept
factor while providing a straightforward interpretation of all
other parameters [e.g., β11 in Equation (2)]. Only the inter-
cept β00c and the variance of ζ0i (ψ00c) of the intercept factor
η0i are assumed to be class-specific. The conditional distri-
bution of η0i given wi is modeled by a mixture of C∗ normal
distributions:

η0i |wi ∼
C∗∑
c=1

πcN (β00c + β02wi,ψ00c), (3)
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THE HGM FOR NONNORMAL DATA 419

where N (·, ·) indicates a normal distribution and πc are la-
tent class probabilities with πc > 0 and

∑
c πc = 1. All other

parameters (β02, β10, β11, β12, γ0, γ1, γ2, λtji , θtt , ψ33) are
restricted to be the same across classes. The mixture model
is used in an indirect application to approximate the poten-
tial nonnormality of the latent intercept factor; class-specific
parameters are not interpreted with regard to subgroups but
only across classes (cf. Bauer, 2005; Kelava et al., 2014;
McLachlan & Peel, 2000).

Specification of the Heteroscedastic Residual

For the specification of the heterogeneity of the variance of
the growth trajectories, the residual term of the slope factor,
ζ1i , is modeled with a heteroscedastic structure:

ζ1i = (γ0 + γ1η0i + γ2wi)ζ2i + ζ3i , (4)

where (γ0 + γ1η0i + γ2wi)ζ2i is the heteroscedastic and ζ3i

is the homoscedastic component of the residual structure.
The residual variables ζ2i and ζ3i are assumed to be normally
distributed with zero means and variances ψ22 and ψ33, re-
spectively. For identification purposes, the variance of ζ2i is
fixed to one (ψ22 = 1). The residual variables are assumed to
be mutually uncorrelated and uncorrelated with η0i and wi .
γ0, γ1, and γ2 are effect parameters that specify the degree
of heteroscedasticity of ζ1i . The model is identified if γ0 and
at least one of the effect coefficients γ1 or γ2 are different
from zero. If γ1 and γ2 are both equal to zero in the popula-
tion, the heteroscedastic and the homoscedastic components
are theoretically not separable. The coefficients γ0, γ1, γ2

are only identified up to their sign, because the distribution
of the heteroscedastic variance component is identical for
(γ0 + γ1η0i + γ2wi)ζ2i and for (−γ0 − γ1η0i − γ2wi)ζ2i .

As a consequence of the modeled heteroscedasticity, the
conditional variance of the slope factor depends on the pre-
dictors η0i and wi :2

V ar(η1i |η0i , wi) = E[(ζ1i)
2|η0i , wi]

= (γ0 + γ1η0i + γ2wi)
2 + ψ33. (5)

The conditional variance of the slope factor is modeled by a
quadratic function of η0i and wi . There are different types of
heteroscedasticity that can be approximated by this function.
The model is capable of capturing an increase or decrease of
the slope variance across the values of the predictor variables
or a situation with both an increase and decrease (and a min-
imum value of the conditional variance for some participants
in between). If the variance changes across participants, the
overall distribution of the variable typically has positive kur-
tosis.

Note that the modeling of heterogeneity is not invariant
against the format of the time coding because it is a con-

2The residual ζ1i is uncorrelated with η0i , wi , because E[ζ1i |η0i , wi ] =
(γ0 + γ1η0i + γ2wi )E[ζ2i |η0i , wi ] + E[ζ3i |η0i , wi ] = 0 = E[ζ1i ] (see,
e.g., Robinson, 1987; White, 1980 for regression models).

ditional variance of the slope that is being modeled. The
heteroscedasticity is specified given the initial status mea-
sured at the first time point. What point in time is selected for
this initial time point of observation depends on substantive
considerations. The heteroscedasticity modeled represents a
dynamic property of the growth trajectories that is contingent
upon when the observation starts. The heteroscedasticity is
not a property of the participants that is time scale-invariant.

The advantage of the HGM-R in comparison to the origi-
nal HGM lies in an unbiased estimation of the γ s under the
condition of nonnormally distributed data. The advantage
of the model in comparison to a standard GMM (with an
indirect application) can be seen in the separation of nonnor-
mality and heteroscedasticity by two different model parts.
In the GMM both data aspects are modeled by the latent class
model. In contrast to other indirect applications of mixture
models (e.g., Bauer, 2005; Pek et al., 2009; Pek, Losardo,
& Bauer, 2011), the parameters of the HGM-R can be inter-
preted directly (e.g., β11).

MODEL ESTIMATION

The HGM-R models a specific type of interaction between a
latent residual and a latent factor or a covariate [e.g., η1iζ2i

and wiζ2i ; see Equation (4)]. In contrast to predictor vari-
ables that are conventionally used to model interaction ef-
fects (e.g., in product indicator approaches or moment-based
approaches; Jöreskog & Yang, 1996; Kelava & Brandt, 2009;
Kenny & Judd, 1984; Marsh et al., 2004; Wall & Amemiya,
2003), there is no measurement model for the residual vari-
able. As a consequence, most of the approaches for nonlinear
structural equation modeling are not applicable. Approaches
that are robust against a violation of distributional assump-
tions (Brandt et al., 2014; Cham, West, Ma, & Aiken, 2012;
Marsh et al., 2004; Marsh, Wen, & Hau, 2006), for exam-
ple, product indicator approaches or the 2SMM estimator
by Wall and Amemiya (2000, 2003), cannot be specified for
the HGM-R. For Bayesian approaches, the necessary prior
knowledge about the parameters of the model is not always
available (e.g., Kelava & Nagengast, 2012; Song, Li, Cai, &
Ip, 2013). Particularly for the HGM-R, there is little infor-
mation available about the effect size of a heteroscedastic
variance component: the semi-parametric information about
the heterogeneity that may be retrieved from GMMs do not
provide insight in the actual effect size. Here, we propose
a maximum likelihood estimator that can be applied partic-
ularly in situations with nonnormal data (cf. Kelava et al.,
2014; Klein & Moosbrugger, 2000).

The specification of an HGM-R with a mixture model for
the latent intercept factor and the heteroscedastic slope factor
[see Equations (3) and (4)] leads to a complex nonnormal
conditional density function for the observed variables yi
given wi (for cross-sectional structural equation models cf.
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420 BRANDT AND KLEIN

Kelava et al., 2014):

f (yi |wi) =
C∗∑
c=1
πcfc(yi |wi) (6)

with class probabilities πc. The class-specific conditional
density function fc(yi |wi) describes a nonnormal distribution
of the conditional indicator vector (yi |wi) within each mix-
ture component (due to the latent product terms), and hence,
the integral of the density function cannot be solved analyt-
ically (Klein & Moosbrugger, 2000). In the original imple-
mentation of the HGM, Klein and Muthén (2006) proposed
a quasi-ML estimator to approximate the function fc. Here,
we propose an ML estimator for which the augmented den-
sity function fc((yi , ζ2i)|wi) = fc(yi |ζ2i , wi)f (ζ2i) is used to
derive the density function of yi (cf. LMS; Klein & Moos-
brugger, 2000). The conditional distribution of (yi |ζ2i , wi, c)
is multivariate normally distributed within each latent class
with continuous mixing variable ζ2i . The density function is
then given as the marginal distribution integrated over ζ2i by

fc(yi |wi) =
∫
ϕ0,1(ζ2i)ϕμ(ζ2i ,wi ,c),(ζ2i ,wi ,c)dζ2i , (7)

where ϕμ, is the (multivariate) normal distribution with
mean vector μ and covariance matrix . This density func-
tion can be approximated numerically by a conditional finite
mixture distribution (e.g., Hermite Gauss, see details in Isaac-
son & Keller, 1966; Klein & Moosbrugger, 2000). The mean
vector and covariance matrix of the conditional distribution
of yi depend on ζ2i , wi and c, and are given by

μ(ζ2i , wi, c)

= E[yi |ζ2i , wi, c]

= �i

⎛
⎜⎝β00c + β02wi

(β10 + β11β00c) + (β11β02 + β12)wi
+ (γ0 + γ1β00c)ζ2i + (γ2 + γ1β02)wiζ2i

⎞
⎟⎠(8)

and

�(ζ2i , w, c)

= Cov(yi |ζ2i , wi, c)

= �i

⎛
⎜⎝ψ00c β11ψ00c + γ1ψ00cζ2i

β11ψ00c + γ1ψ00cζ2i
β2

11ψ00c + ψ33 + γ 2
1 ψ00cζ

2
2i

+2β11γ1ψ00cζ2i

⎞
⎟⎠

×�′
i +� (9)

(see derivation of the conditional mean vector and covariance
matrix in Appendix A).

The likelihood function for a sample of i = 1, . . . , N ran-
domly drawn observations (y′

i , wi)
′ from the finite mixture is

then given by

L =
N∏
i=1

(
C∗∑
c=1
πcfc(yi |wi)

)
. (10)

L is a function of the unknown parameters as specified
in Equations (1) to (4). The unknown parameters in the
likelihood function L can be estimated by applying the
expectation-maximization (EM) algorithm (Dempster et al.,
1977). The model can be specified and estimated feasibly in
Mplus (Muthén & Muthén, 1998–2012). Mplus sample code
for a model with two latent classes is provided in Appendix
B.

For the estimation of the HGM-R as proposed here, it
is assumed that the measurement residual variables are nor-
mally distributed as well as the residual variables of the slope
factor ζ2i and ζ3i . The distributional assumption for the latent
intercept factor η0i is relaxed and it is only assumed that it
is normally distributed within each class. Hence, indicator
variables yi can be nonnormally distributed.

Model Fit

The HGM-R is conceptualized with a parametric model for
the heteroscedasticity of the slope factor and a mixture model
for the nonnormality of the latent predictor. These model
parts refer to different data aspects and the necessity to in-
clude both parts needs to be assessed in order to provide a
parsimonious model that adequately fits the data. In general,
models with different numbers of latent classes are not nested
within each other (Nylund, Asparouhov, & Muthén, 2007;
McLachlan & Peel, 2000), and likelihood ratio test statistics
cannot be applied. Yet, comparative fit indices, particularly
the BIC (Bayesian information criterion; Schwartz, 1978)
or the AIC (Akaike information criterion; Akaike, 1987),
provide information about the number of latent classes nec-
essary in mixture models (Jedidi, Jagpal, & DeSarbo, 1997;
Nylund et al., 2007). Hence, BIC and AIC can provide infor-
mation about the number of classes necessary to account for a
nonnormality of the data.

Besides a standard significance test based on the estimated
standard errors, a decision regarding the necessity to include
a heteroscedastic residual is more complicated. Two different
parameter constraints could be used to model a homoscedas-
tic residual: either γ0 = γ1 = γ2 = 0 or γ1 = γ2 = 0. Both
resulting models are not identified, because the heteroscedas-
tic component [associated with ζ2i , see Equation (4)] and
the homoscedastic variance component (associated with ζ3i)
are not separable. These models cannot be estimated, and
hence, they cannot be used as comparison models for a like-
lihood ratio test. An LGM with a homoscedastic residual is
structurally different, because it does not include the product
terms of the HGM-R (e.g., wiζ2i); these models are thus not
nested, though the addition of covariates in the HGM-R to
explain the heterogeneity can be tested with the constraint
γ2 = 0 (for comparison models and likelihood ratio tests for
SEM with interaction effects see Gerhard et al., 2015). Fur-
thermore, information criteria in SEM that are based on the
likelihood typically do not respond to misspecification of the
conditional (co)-variance structure. Hence, up to the present
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THE HGM FOR NONNORMAL DATA 421

TABLE 1
Mean Estimates Under the Condition of Normally and Nonnormally Distributed Data with Population Parameters γ0 = γ1 = .3

#Latent Classes 1 2 3

γ0 γ1 γ2 γ0 γ1 γ2 γ0 γ1 γ2

Normally Distributed Data
γ2 = .0 N = 800 Rel(a) .33

∗∗
.29

∗
.00 .33

∗∗
.29

∗
.00 .34

∗∗
.28

∗
.00

Rel(b) .34
∗∗

.28
∗

.00 .34
∗∗

.28
∗∗

.00 .40
∗∗

.27
∗∗

.00
N = 400 Rel(a) .34

∗∗
.28

∗
.00 .40

∗∗
.25

∗∗
.00 .40

∗∗
.26

∗∗
.00

Rel(b) .35
∗∗

.26
∗∗

.00 .40
∗∗

.25
∗∗

.01 .43
∗∗

.25
∗∗

.00
γ2 = .2 N = 800 Rel(a) .30 .30 .20 .30 .30 .20 .30 .30 .20

Rel(b) .31 .30 .19 .31 .30 .19 .31 .30 .19
N = 400 Rel(a) .31 .29 .21 .31 .29 .20 .32

∗
.29 .20

Rel(b) .31 .29 .21 .32
∗

.29 .21 .32
∗

.29 .20
γ2 = .4 N = 800 Rel(a) .30 .30 .39 .30 .30 .40 .30 .30 .40

Rel(b) .30 .30 .39 .30 .30 .39 .30 .30 .40
N = 400 Rel(a) .30 .29 .40 .30 .29 .40 .30 .29 .41

Rel(b) .30 .29 .40 .31 .30 .40 .31 .30 .41

Nonnormally Distributed Data
γ2 = .0 N = 800 Rel(a) .36

∗∗
.34

∗∗ −.03 .41
∗∗

.27
∗

.00 .40
∗∗

.27
∗

.00
Rel(b) .40

∗∗
.40

∗∗ −.05 .46
∗∗

.26
∗∗

.00 .42
∗∗

.27
∗∗

.00
N = 400 Rel(a) .36

∗∗
.35

∗∗ −.03 .44
∗∗

.26
∗∗

.01 .45
∗∗

.27
∗∗

.01
Rel(b) .39

∗∗
.40 −.05 .46

∗∗
.26

∗∗
.01 .44

∗∗
.27

∗∗
.01

γ2 = .2 N = 800 Rel(a) .33
∗

.34
∗∗

.17
∗∗

.31 .30 .19 .30 .30 .20
Rel(b) .36

∗∗
.39

∗∗
.13

∗∗
.32

∗
.30 .19

∗
.31 .30 .19

N = 400 Rel(a) .33
∗

.33
∗∗

.16
∗∗

.34
∗∗

.28
∗

.19
∗

.33
∗

.28
∗

.19
Rel(b) .37

∗∗
.39

∗∗
.12

∗∗
.36

∗∗
.28

∗
.18

∗∗
.33

∗∗
.28

∗
.19

γ2 = .4 N = 800 Rel(a) .31 .33
∗

.38 .30 .30 .40 .30 .30 .40
Rel(b) .34

∗∗
.38

∗∗
.35

∗∗
.30 .30 .40 .30 .30 .40

N = 400 Rel(a) .32
∗

.32
∗

.39 .30 .29 .40 .30 .29 .41
Rel(b) .34

∗∗
.37

∗∗
.35

∗∗
.31 .29 .40 .30 .29 .41

Note.
∗
Relative bias above ±5%;

∗∗
Relative bias above ±10%; N = sample size; Rel(a) = low reliability; Rel(b) = high reliability.

it has not been clear if AIC or BIC can provide useful infor-
mation regarding a preference for the HGM-R or the LGM
for a given data set.

There is not much experience with the robustness of non-
linear, longitudinal models with latent growth factors in gen-
eral. In our case, this particularly concerns the question of
how reliably the core part of the model—the heteroscedas-
tic variance component in Equation (4)— can be estimated.
For the practical application of the HGM-R, it is vital that
it does not produce spurious effects when modeling het-
erogeneity. One needs to be certain that under a variety of
empirically relevant conditions the model does not estimate
a heteroscedastic variance component that is only an artifact.
For a more in-depth study of this potential problem, we con-
ducted two simulation studies that are presented in the next
section.

SIMULATION STUDY

We conducted two simulation studies to assess the robust-
ness of the HGM-R. In the first study, we investigated its
robustness against a violation of the normality assumption.
For this purpose, we varied the degree of nonnormality of the

latent intercept η0, the sample size, the reliability of the mea-
surements, and the heteroscedasticity. We analyzed a model
including one latent intercept factor, one slope factor, and
one covariate. In the second simulation study, we assessed
the robustness of the model against a misspecification of the
heteroscedastic residual structure.

Simulation Study 1

Data were generated according to the equations

η0i = .3wi + ζ0i ,

η1i = 2+.5η0i+.3wi+(.3 + .3η0i+γ2wi)ζ2i+ζ3i . (11)

The variances of ζ0i and ζ3i were specified such that η0i

and η1i had unit variance. The covariate wi and the resid-
ual variables ζ2 had zero mean and unit variance. γ2 was
varied on three levels, γ2 = 0 (Type I error condition),
γ2 = .2 (medium heteroscedasticity), and γ2 = .4 (high het-
eroscedasticity). Because the identification of covariates that
explain heterogeneity may be of primary interest for re-
searchers, we restricted the variation of the heteroscedasticity
to the γ2 parameter.
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422 BRANDT AND KLEIN

TABLE 2
Mean Standard Errors Under the Condition of Normally and Nonnormally Distributed Data

#Latent Classes 1 2 3

γ0 γ1 γ2 γ0 γ1 γ2 γ0 γ1 γ2

Normally Distributed Data
γ2 = .0 N = 800 Rel(a) .10+ .07 .06 .09− .07− .06 .09− .07− .06

Rel(b) .12 .08 .07 .11− .07− .06− .10− .08− .06−
N = 400 Rel(a) .12 .09 .07− .11− .09− .08− .10− .08− .07−

Rel(b) .15 .10− .09− .13− .10− .08− .13− .10− .09−
γ2 = .2 N = 800 Rel(a) .06 .05 .05 .06 .05 .05 .06 .05 .05

Rel(b) .07 .06 .06 .07 .06 .06 .07− .07 .06
N = 400 Rel(a) .09 .07− .07 .08− .07− .07 .09− .08− .07

Rel(b) .10 .08− .08 .10− .09− .08 .11− .10 .09
γ2 = .4 N = 800 Rel(a) .04 .04 .04− .04 .04 .04− .04 .04 .04−

Rel(b) .05 .05 .05− .05 .05 .05− .05 .05 .05
N = 400 Rel(a) .06 .06 .06 .06 .06 .06 .06 .07 .07

Rel(b) .07 .07 .07 .07 .07 .07− .09 .09 .09

Nonnormally Distributed Data
γ2 = .0 N = 800 Rel(a) .11 .07 .06 .13− .07− .06− .11− .07− .06−

Rel(b) .10 .07 .07 .16− .07 .06− .12− .07− .06−
N = 400 Rel(a) .13− .09 .08− .15− .08− .07− .13− .08− .07−

Rel(b) .14 .10 .09 .15− .09− .08− .16− .11− .09−
γ2 = .2 N = 800 Rel(a) .06 .05 .05 .06 .05 .05 .06 .05− .05

Rel(b) .07 .06 .06 .07 .05− .06 .07 .06 .06
N = 400 Rel(a) .10 .08 .08− .09− .07− .07− .08− .07− .07−

Rel(b) .10− .09− .09− .10− .08− .08− .10− .09− .08−
γ2 = .4 N = 800 Rel(a) .04 .04 .04 .04 .04 .04 .04 .04 .04

Rel(b) .05+ .05 .06 .04 .05 .05 .05 .05 .05
N = 400 Rel(a) .06 .06− .06− .05 .06− .06 .06 .06 .06

Rel(b) .07 .07− .07− .06 .07 .07 .06 .07− .06

Note. + SE/SD > 1.1; − SE/SD < .9; N = sample size; Rel(a) = low reliability; Rel(b) = high reliability.

The measurement model was specified for t = 1, . . . , 4
repeated measures3 by

yti = η0i + λtη1i + εti (12)

with time scores λt = t − 1, and residual variances θtt = .25
(Rel(a)) or θtt = .50 (Rel(b)). This implied a reliability of
the first indicator variable of .80 (high reliability) or .67 (low
reliability).4

We selected two conditions for the distribution of η0, in
agreement with conditions for nonnormality proposed by
Curran, West, and Finch (1996) as typical: (a) normal dis-
tribution with skewness 0 and kurtosis 0, and (b) moderate
nonnormality with skewness 2 and kurtosis 7. For the remain-
ing exogenous variables, normally distributed scores were
generated. The nonnormality of the observed indicator vari-
ables was caused by a nonnormality of the intercept factor and
additional kurtosis was induced by the heteroscedasticity of
the slope factor. Skewness/kurtosis (estimated from samples
with N = 160, 000) of the observed variables ranged from

3The simulation results did not depend on the number of repeated mea-
sures. A model with eight repeated measures showed only slight differences
in comparison to the results reported here.

4The reliability of the other indicator variables varied depending on the
degree of heterogeneity.

0/0 (no heteroscedasticity) to .4/1.6 (high heteroscedastic-
ity) under the condition of a normally distributed intercept
factor, and from .9/2.2 (no heteroscedasticity) to 1.2/3.8
(high heteroscedasticity) under the condition of a nonnor-
mally distributed intercept factor.

For each condition, data were generated in the R software
(R Core Team, 2014) with 200 replications of a data set with
N = 400 or N = 800 cases. Nonnormal data for η0 were gen-
erated using the Fleishman (1978) method. The simulation
design included a total of 24 conditions (2 (distribution) × 2
(sample size) × 3 (effect size) × 2 (reliability)).

Each data set was analyzed with both a correctly speci-
fied HGM (“single-class solution” without mixture model)
and HGM-R (2- and 3-class solutions) that were imple-
mented in Mplus 7 (Muthén & Muthén, 1998–2012). For
the analysis with the 2- and 3-class models, starting val-
ues for each data set were obtained from the HGM. In
order to identify the sign of the γ parameters, the con-
straint γ0 > 0 was applied. Non-convergent solutions, solu-
tions with negative variances and obvious outliers (detected
by visual examination via boxplots and z-scores, cf. Pax-
ton, Curran, Bollen, Kirby, & Chen, 2001) were deleted.
The percentage of proper solutions exceeded 96% with 99%
on average.
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THE HGM FOR NONNORMAL DATA 423

TABLE 3
Coverage Rates for the 95% Confidence Interval Under the Condition of Normally and Nonnormally Distributed Data

#Latent Classes 1 2 3

γ0 γ1 γ2 γ0 γ1 γ2 γ0 γ1 γ2

Normally Distributed Data
γ2 = .0 N = 800 Rel(a) 97 96 91 88 88 89 89 91 92

Rel(b) 95 91 90 82 78 89 75 76 87
N = 400 Rel(a) 92 86 92 74 75 89 72 71 88

Rel(b) 88 81 90 73 71 86 69 72 86
γ2 = .2 N = 800 Rel(a) 94 95 94 93 95 93 94 94 94

Rel(b) 94 94 96 93 95 95 93 95 95
N = 400 Rel(a) 94 91 94 92 89 91 91 90 91

Rel(b) 94 89 92 90 88 91 89 90 91
γ2 = .4 N = 800 Rel(a) 99 93 88 98 93 88 98 95 89

Rel(b) 99 93 88 98 93 89 97 92 90
N = 400 Rel(a) 95 94 92 93 93 89 94 93 91

Rel(b) 93 91 91 91 92 89 93 90 89

Nonnormally Distributed Data
γ2 = .0 N = 800 Rel(a) 95 87 88 76 77 86 73 76 90

Rel(b) 84 69 85 71 75 88 65 73 85
N = 400 Rel(a) 90 84 86 68 69 84 63 66 86

Rel(b) 85 75 85 63 68 85 61 64 83
γ2 = .2 N = 800 Rel(a) 96 85 90 97 94 93 97 92 92

Rel(b) 87 67 77 97 92 92 98 92 93
N = 400 Rel(a) 91 89 90 88 87 86 88 84 87

Rel(b) 87 78 80 83 87 86 88 83 87
γ2 = .4 N = 800 Rel(a) 96 91 93 97 92 94 97 90 94

Rel(b) 90 68 86 97 93 94 97 92 94
N = 400 Rel(a) 93 89 93 95 90 94 95 89 94

Rel(b) 91 81 88 96 90 95 95 89 92

Note. N = sample size; Rel(a) = low reliability; Rel(b) = high reliability.

Results of the Simulation Study

For the parameters of the heteroscedastic variance com-
ponent, γ0, γ1, and γ2, we report on the mean parameter
estimates and the (relative) bias, the average standard errors
(SE), the 95% coverage values, the percentage of significant
estimates (based on significant tvalues), and comparative fit
indices (AIC and BIC). Results are presented in Tables 1 to 5.

Parameter estimates. The results for the parameter
estimates are presented in Table 1 for both normally and
nonnormally distributed data. A (slight) relative bias of more
than ±5% was indicated with one asterisk; a relative bias
of more than ±10% was indicated accordingly with two
asterisks (cf. Hoogland & Boomsma, 1998).

Under the condition of normally distributed data, param-
eter estimates produced by all 3 models were unbiased under
the condition with γ2 > 0 with a bias smaller than ±.02
(which corresponds to approximately 5% relative bias). Un-
der the Type I error condition (γ2 = 0), parameter estimates
were biased for γ0 and γ1 with mean estimates between .25
and .43 (population parameter γ0 = γ1 = .3). The bias was
larger for N = 400 than for N = 800, and slightly larger
under the condition of low reliability. Under the condition of
nonnormally distributed data and γ2 = 0 (Type I error con-

dition), parameter estimates were biased for all models with
mean estimates for γ0 and γ1 between .26 and .46. Under
the condition with γ2 > 0, parameter estimates were essen-
tially unbiased for the HGM-R. Parameter estimates for the
HGM were biased across all conditions with nonnormally
distributed data with a bias between −.08 and +.10 (which
corresponds to approx. ±30% relative bias).

The estimated parameters of the mean relationship were
unbiased across all conditions for the HGM-R with an aver-
age relative bias of +0.21% and a maximal bias of +3.31%.
For the HGM, β11 was underestimated under the condition
of nonnormal data with an average relative bias of −16.32%,
and β12 was slightly overestimated with an average relative
bias of +9.77%.

Standard error estimates. Results for the mean stan-
dard error (SE) estimates are presented in Table 2. The
SE was compared to the Monte Carlo SD. A ratio of
SE/SD < .90 was indicated by a minus sign (“−”) and a ratio
of SE/SD > 1.10 by a plus sign (“+”). Under the condition
of γ2 > 0, SE estimates were fairly similar for both normally
and nonnormally distributed data and for the different class
models. For N = 800 they lay between .03 and .07, for N
= 400 they lay between .05 and .11. Under the condition of
γ2 = 0, SE estimates were larger, ranging from .05 to .16. The
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424 BRANDT AND KLEIN

TABLE 4
Percentage of Significant Estimates Under the Condition of Normally and Nonnormally Distributed Data

# Latent Classes 1 2 3

γ0 γ1 γ2 γ0 γ1 γ2 γ0 γ1 γ2

Normally Distributed Data
γ2 = .0 N = 800 Rel(a) 92 92 4 94 94 5 92 93 3

Rel(b) 83 86 6 87 86 5 89 88 7
N = 400 Rel(a) 81 86 5 83 81 6 82 85 8

Rel(b) 67 73 5 66 73 8 71 69 8
γ2 = .2 N = 800 Rel(a) 100 100 92 100 100 92 100 100 92

Rel(b) 97 99 88 98 99 87 97 97 84
N = 400 Rel(a) 92 92 77 92 92 80 90 90 78

Rel(b) 88 88 71 86 86 69 82 84 67
γ2 = .4 N = 800 Rel(a) 100 100 100 100 100 100 100 100 100

Rel(b) 100 100 100 100 100 100 100 98 100
N = 400 Rel(a) 99 99 100 100 99 99 98 95 98

Rel(b) 98 98 99 98 96 97 92 88 95

Nonnormally Distributed Data
γ2 = .0 N = 800 Rel(a) 91 100 4 79 94 6 79 94 6

Rel(b) 97 99 2 71 91 6 71 91 8
N = 400 Rel(a) 71 93 3 64 85 7 66 84 8

Rel(b) 80 93 2 63 81 8 56 73 9
γ2 = .2 N = 800 Rel(a) 100 100 85 100 100 94 100 100 96

Rel(b) 100 100 56 99 100 86 100 99 90
N = 400 Rel(a) 89 95 64 92 95 74 91 94 73

Rel(b) 91 97 42 86 91 66 84 86 70
γ2 = .4 N = 800 Rel(a) 100 100 100 100 100 100 100 100 100

Rel(b) 100 99 99 100 100 100 99 97 100
N = 400 Rel(a) 100 99 100 100 96 100 100 95 99

Rel(b) 100 99 97 100 96 100 100 93 100

Note. N = sample size; Rel(a) = low reliability; Rel(b) = high reliability.

mean SE estimates were virtually unbiased for N = 800 and
γ2 > 0 for all three models. They were underestimated for N
= 400 and also under the Type I error condition (γ2 = 0), i.e.,
the ratio of the mean standard error estimate and the Monte
Carlo standard deviation (SE/SD) was below .90.

Coverage rates. Results for the coverage rates of the
95% confidence intervals are presented in Table 3. Under the
condition of normally distributed data and γ2 > 0, coverage
rates were very similar for all three models and reliability
conditions, and lay between 88% and 99%. Under the condi-
tion of normally distributed data and γ2 = 0, coverage rates
were lower for N = 400 than for N = 800 and decreased
slightly with the number of latent classes. Under the condi-
tion of nonnormally distributed data and γ2 > 0, coverage
rates were close to the nominal 95% for HGM-R with cover-
age rates between 83% and 98% (about 92% on average), and
were lower for the HGM. Under the condition with γ2 = 0
coverage rates were lower and lay between 61% and 95%;
the coverage rates decreased with an increasing number of
latent classes.

Power and type I error rates. Results for the power
and Type I error rates (based on the calculated t values) are
presented in Table 4. The Type I error rates for γ2 = 0 with

a nominal level of 5% were not severely inflated under any
of the conditions with a maximal Type I error rate of 9%.
The power for detecting an effect in samples with N = 800
was close to 100% for γ0 and γ1 under all conditions with
a power of at least 71% (97% on average); for γ2 = .2 the
power lay above 84%, for γ2 = .4 the power lay above 99%.
For N = 400, the power for γ0 and γ1 increased from at least
56% (under the condition of γ2 = 0), to at least 84% (under
the condition of γ2 = .2), and 88% (under the condition of
γ2 = .4); the power for detecting γ2 was above 64% (except
for one condition with a power of 42%).

Model fit. Results for the comparative fit indices BIC
and AIC are presented in Table 5. The table depicts the per-
centage in which the 1-, 2-, or 3-class models were pre-
ferred by the BIC or AIC, respectively. Under the condition
of normally distributed data, the single-class model (HGM)
had smaller BIC values in 99% to 100% of the replications.
When using the AIC, less parsimonious models were pre-
ferred more often: the 2-class model was selected in 17% on
average and the 3-class model in 4%. Under the condition
of nonnormally distributed data, the HGM was rarely pre-
ferred. The 2-class HGM-R was preferred most often by the
BIC (70% on average) and the 3-class HGM-R was preferred
most often by the AIC (86% on average). Under the condi-
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THE HGM FOR NONNORMAL DATA 425

TABLE 5
Percentage of Models Preferred by the BIC or the AIC

Under the Condition of Normally and Nonnormally
Distributed Data

#Latent Classes BIC AIC

1 2 3 1 2 3

Normally Distributed Data
γ2 = .0 N = 800 Rel(a) 100 0 0 77 17 6

Rel(b) 100 0 0 75 22 3
N = 400 Rel(a) 99 1 0 75 19 7

Rel(b) 99 1 0 72 23 6
γ2 = .2 N = 800 Rel(a) 100 0 0 77 18 6

Rel(b) 100 0 0 83 12 5
N = 400 Rel(a) 100 0 0 83 16 2

Rel(b) 100 0 0 81 17 2
γ2 = .4 N = 800 Rel(a) 99 1 0 85 12 3

Rel(b) 99 1 0 82 14 4
N = 400 Rel(a) 100 0 0 81 15 5

Rel(b) 100 0 0 76 18 6

Nonnormally Distributed Data
γ2 = .0 N = 800 Rel(a) 0 44 56 0 2 98

Rel(b) 0 75 25 0 9 91
N = 400 Rel(a) 0 76 24 0 19 81

Rel(b) 0 95 5 0 36 64
γ2 = .2 N = 800 Rel(a) 0 46 54 0 1 99

Rel(b) 0 74 26 0 7 93
N = 400 Rel(a) 0 76 25 0 14 86

Rel(b) 1 88 12 0 34 66
γ2 = .4 N = 800 Rel(a) 0 38 62 0 2 98

Rel(b) 0 70 30 0 7 93
N = 400 Rel(a) 0 77 23 0 12 88

Rel(b) 0 86 14 0 29 71

Note. N = sample size; Rel(a) = low reliability; Rel(b) = high reliability.

tion of nonnormally data, model selection based on the BIC
and the AIC were influenced by reliability and sample size:
with increasing sample size and with increasing reliability
the 3-class solution was preferred more often.

A comparison between a standard LGM and all three dif-
ferent heteroscedastic models (HGM and HGM-R) showed
smaller AIC and BIC values for the LGM in 100% of the
replications across all conditions. The fit indices were not
sensitive to detect a violation of the variance structure spec-
ified in the population model.

Simulation 2

In the second simulation study, we provide information about
the performance of the model when the functional form of
the heteroscedasticity is misspecified. Four different popu-
lation models were selected that captured different possible
heteroscedastic structures. Each model was generated with a
standard normally distributed intercept factor, a linear slope
factor and four repeated measures that were specified ac-
cording to the measurement model given in Equation (12).
For the first two conditions the misspecified continuous het-
eroscedasticity function specified in Equations (13) and (14)

were used:

η1i = .56 − .12η0i + (.3 + .3(η0i)2)ζ2i + ζ3i (13)

and

η1i = .56 − .12η0i+(.3 + .9 log(η0i + 4.5))ζ2i+ζ3i ,(14)

with variancesψ22 = 1 andψ33 = .4. The third and the fourth
population models were given by two versions of a categor-
ical function for the heteroscedasticity:

η1i = .56 − .12η0i + ζ1ik, (15)

where the variance of ζ1ik changed across values of
η0i . k = 6 intervals were specified with interval lim-
its (−∞,−2,−1, 0, 1, 2,+∞) with interval specific vari-
ances ψ11 = (ψ111, . . . , ψ116)′ = (3.6, 2.8, 1.6, .4, 1.6, 2.8)′

for the third and ψ11 = (.4, 1.6, 2.8, 3.6, 2.8, 1.6)′ for the
fourth population model (see Figure 1 for a visualization of
the resulting heteroscedasticity).

All four models were analyzed with an HGM (without
a mixture model) because the intercept factor was normally
distributed, and a standard LGM. In Table 6, results for the
estimated functions of the conditional variances are shown.
We calculated the area between the true variance functions
and the variance functions based on the mean parameter
estimates for the HGM (see Equation (5)) and the LGM,
respectively, in an interval between −2 and +2 that con-
tained about 95% of the scores of the standard normally
distributed intercept factor. The areas were smaller for the
HGM than for the LGM for the first three population models,
which indicated that the approximation of the true function
was better for the HGM than for the LGM. Only for the
fourth population model the area was slightly larger for the
HGM.

A graphical depiction of the estimated 95% prediction in-
tervals is shown in Figure 1. For both models— the HGM
and the LGM— the mean relationships were unbiased and
did not differ between the LGM and the HGM; this was ex-
pected because the LGM produces consistent estimates for
the mean relationship even in the presence of heteroscedas-
ticity. The HGM captured the modeled heteroscedasticity
under most conditions: both an increase/decrease of the con-
ditional variance as in first and third population model as
well as a monotonic increase as in the second population
model. A scenario that the HGM could not approximate well
was specified with the fourth population model. Here, the
true conditional variance increased around the mean of the
intercept factor. In practice, this scenario would imply that
participants with low or high initial status can be predicted
more precisely than those with an average initial status.

EMPIRICAL EXAMPLE

We illustrate the application of the HGM-R by an analysis of
an empirical data set about CD4 cell counts in HIV-infected
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426 BRANDT AND KLEIN

FIGURE 1 Mean relationships and 95% prediction intervals for the slope factor η1 given the intercept factor η0 based on the true model (indicated in grey)
and the mean estimates provided by the HGM (dashed lines) and the LGM (dotted lines).

patients. The human immune-deficiency virus (HIV) causes a
progressive reduction in the number of T-lymphocytes (CD4
cells), which has a direct impact on the functioning of the
immune system. By measuring the number of CD4 cells,
disease progression can be assessed (Zeger & Diggle, 1994).

The original data set was collected in a randomized, con-
trolled, double-blind study that investigated the efficacy of
four different treatments (Henry et al., 1998; data publicly
available in Fitzmaurice, Laird, & Ware, 2004). CD4 cell

counts were measured at four subsequent time points in in-
tervals of approximately 8 weeks. For our analysis,N = 821
cases were selected, under the condition that patients were
observed at least once within four given intervals (6–10,
14–18, 22–26, and 30–34 weeks after treatment).

Due to a strong deviation from the normal distribution
observed for the four count variables, a square root trans-
formation was applied, which led to a normalization and
variance stabilization (Johnson, Kotz, & Kemp, 1993). Miss-

TABLE 6
Results for the Misspecified Heteroscedastic Residual Structure

fpop fHGM fLGM |Fpop − FHGM | |Fpop − FLGM |

1 (0.025 + 0.684η0i )2 + 0.420 .935 .391 1.874
2 (1.289 + 0.278η0i )2 + 1.292 3.082 6.182 14.140
3 (0.436 − 0.852η0i )2 + 0.586 1.429 1.862 2.742
4 (1.490 + 0.202η0i )2 + 0.550 2.810 2.163 2.021

Note. fpop are variance functions (cf. Equation (5)) of the the population models as specified in Equations 13 to 15. The variance functions fHGM and fLGM
are based on the mean parameter estimates. The area between the functions (|Fpop − FHGM | and |Fpop − FLGM |) was calculated in an interval of −2 to +2
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TABLE 7
Descriptive Statistics for the Four Repeated

Measurements of CD4 Cell Count

Correlations

Mean SD Skewness Kurtosis y2 y3 y4

y1 5.158 2.751 1.330 5.616 .792 .773 .633
y2 5.200 2.847 1.429 6.181 .838 .786
y3 4.563 2.462 1.360 5.803 .832
y4 4.739 2.708 1.389 5.383

Note. SD = standard deviation.

ingness was assumed to be missing at random (cf. Vallejo,
Fernández, Livacic-Rojas, & Tuero-Herrero, 2011). For pa-
rameter estimation, this was accounted for by applying the
FIML estimator.

Descriptive statistics for the four measures y1 to y4 are
given in Table 7. The mean cell counts decreased over time
and were slightly nonnormal with a skew of about 1.4 and
a kurtosis of about 5.8. This nonnormality was comparable
to that examined in the simulation study presented before.
Figure 2 (bottom panel) depicts a scatterplot for the first and
the fourth measurement occasion. The bivariate distribution
indicated heteroscedasticity of the conditional variance of y4

given y1; the conditional variance increased across different
values of the CD4 cell counts at time 1. This pointed to a
necessity to apply a heteroscedastic residual structure for the
slope factor. Further, the skewed marginal distribution of y1

that resulted from the fact that most participants had low
initial CD4 cell counts indicated the necessity to model a
nonnormal distribution for the intercept factor.

Four models were specified: a standard LGM, the HGM,
and the HGM-R estimated with 2 and 3 classes. For all models
linear growth was assumed. The residual variance of ζ3 was
very close to zero and not significant. Hence, it was fixed to
zero for the final models.

Results for the four models are presented in Table 8. The
model fit for the LGM indicated a good fit of the model to
the data (χ2

SB = 5.802, df = 5, p = .326), which implied
that the assumption of linear growth was adequate. For the
heteroscedastic models, the model fit indices BIC (and AIC)
suggested that the HGM-R with 2 to 3 classes was neces-
sary to account for the nonnormality of the intercept factor.
The results for the measurement model and the linear rela-
tionships were very similar for all models. The reliability
values of the four indicator variables lay between .835 and
.912 (based on the standardized estimates of the LGM). The
impact of the initial status on the slope factor was negative
(β̂11 ≈ −.1, p < .01 for all models) which corresponds to a
medium to large effect size with a standardized β̂11 = −.46
(for the HGM-R with 2 classes). Differences between the
HGM-R and the LGM resulted from the estimates for the
heteroscedastic variance structure. The interaction effect γ1

was significant and negative for all heteroscedastic models
(γ̂1 ≈ −.1, p < .01), which suggested that the slope factor

had a heteroscedastic variance component. In order to test
if the obtained heteroscedasticity could be explained by ad-
ditional covariates, we estimated an HGM-R (with 2 latent
classes) that included a baseline CD4 cell count variable
and the participants’ age. Both covariates contributed sig-
nificantly to the heteroscedasticity with γ̂2 = .097 (p < .01)
and γ̂3 = .007 (p = .01).

In order to provide information that the heteroscedasticity
was not an artifact resulting from the specific transformation
of the CD4 cell counts; three other transformations were ap-
plied to the count data: a log transformation, an Anscombe
transformation (Anscombe, 1948), and a Box-Cox transfor-
mation (Box & Cox, 1964). All transformations led to a
normalization and variance stabilization (cf. Johnson et al.,
1993). All data sets were analyzed and resulted consistently
in a significant heteroscedastic variance component (results
not presented here).

The consequences of the heteroscedasticity are illustrated
in Figures 2 and 3. In the top panel of Figure 2, the change of
the conditional variance of the fourth measurement occasion
[V (y4|y1, w)] is illustrated across the different values of the
initial CD4 cell counts (y1) and the participants’ standard-
ized age (w; for the derivation of the conditional variance
and the prediction intervals see Appendix C). The variance
increased considerably with the initial CD4 cell counts and
age; it was lowest for participants with a standardardized age
of 2 and an average initial CD4 cell count. In the bottom
panel of Figure 2, results for the prediction of ŷ4 given y1

are presented for the LGM and the HGM-R (with 2 latent
classes). The predicted ŷ4 given y1 were very similar for the
HGM-R (solid line) and the LGM (dashed line). But the 95%
prediction intervals were clearly different. The prediction in-
terval calculated under the HGM-R was slightly narrower
than it was under the LGM for participants with y1 scores
around the mean (ȳ1 = 5.158). These participants developed
most consistently over time. The size of the prediction inter-
val increased with y1. The result for the HGM-R thus gives
a model-based explanation for the heterogeneity.

Further, Figure 3 illustrates the growth rates for some
randomly drawn participants with low, average, or high initial
CD4 cell counts. Participants with low or medium initial CD4
cell counts had rather parallel growth rates while participants
with high initial CD4 cell counts developed differently over
time. Some stayed at a high level while others exhibited a
strongly decreasing CD4 cell count.

DISCUSSION

In this article, we presented an extension of the heteroge-
neous growth curve model for the analysis of nonnormally
distributed data and its implementation in Mplus. Parameter
estimation for the heteroscedastic variance component could
be enhanced by introducing a mixture model for the latent
intercept factor that accounted for the nonnormality in the
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428 BRANDT AND KLEIN

FIGURE 2 Top panel: Conditional variance of y4 given the first measurement occasion (y1) and participants’ standardized age (w). Bottom panel: Scatterplot
plot for the repeated measures of CD4 cell count at time 1 and 4 (y1 and y4, respectively), and prediction intervals for the predicted outcome at time 4 (ŷ4)
given y1 under an HGM-R with two classes (solid lines) and a fitted LGM (dashed lines).
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TABLE 8
Results for the Parameter Estimates (Standard Errors in Brackets) and Model Fit for the Latent Growth Curve Model (LGM), the

Heterogeneous Growth Curve Model (HGM) and the Robust Extension of the HGM (HGM-R) with Two or Three Classes

LGM HGM HGM-R (2) HGM-R (3)

Parameter Estimates
γ0 .40

∗
(.17) .18(∗) (.10) .26

∗
(.11)

γ1 −.15
∗∗

(.02) −.11
∗∗

(.01) −.13
∗∗

(.01)
β00 5.37

∗∗
(.10) 5.35

∗∗
(.10) 5.37† 5.36†

β10 .09 (.14) .19
∗

(.09) .18
∗

(.08) .11(∗) (.06)
β11 −.08

∗∗
(.03) −.10

∗∗
(.02) −.10

∗∗
(.02) −.08

∗∗
(.01)

ψ00 7.07
∗∗

(.70) 7.02
∗∗

(.62) 7.60† 7.53†

ψ33 .22
∗∗

(.07) .00 .00 .00
θ11 1.40

∗∗
(.35) 1.08

∗∗
(.29) .90

∗∗
(.16) .89

∗∗
(.17)

θ22 1.49
∗∗

(.31) 1.52
∗∗

(.31) 1.53
∗∗

(.29) 1.54
∗∗

(.30)
θ33 .56

∗∗
(.14) .52

∗∗
(.10) .55

∗∗
(.10) .53

∗∗
(.09)

θ44 .87
∗∗

(.28) .80
∗∗

(.19) .78
∗∗

(.17) .73
∗∗

(.19)

Class-Specific Parameter Estimates
P (C = 1) 0.74 0.75
P (C = 2) 0.26 0.20
P (C = 3) 0.05
β001 4.28

∗∗
(.12) 4.17

∗∗
(.31)

β002 8.49
∗∗

(.40) 7.89
∗∗

(2.19)
β003 12.12

∗∗
(5.41)

ψ001 2.00
∗∗

(.24) 1.77
∗∗

(.42)
ψ002 10.67

∗∗
(1.36) 3.47 (2.18)

ψ003 12.59 (10.86)
Fit Indices

BIC 8375 8221 8051 8057
AIC 8333 8174 7990 7982

Note. ∗∗p < .01, ∗p < .05, (∗)p < .10; †Estimates based on Equations (32) and (33) in Appendix C.

data. Conditions for the practical use of the model were thor-
oughly examined in a simulation study, and the model was
illustrated by an empirical example. In the simulation study,
we showed that the model provided promising results even
when distributional assumptions were moderately violated.

The HGM-R allows the modeling of heterogeneous vari-
ances for individual growth trajectories. This specific feature
can be used for several purposes: first, in some contexts it
permits the estimation of more flexible and thereby more
accurate prediction intervals for individual scores based on
information about the initial status. These prediction inter-
vals are more precise than those of a standard single-group
LGM when a heterogeneity exists in the conditional vari-
ances of the growth trajectories. Second, the HGM-R also
allows for an identification of subgroups for which the slope
variance is comparatively small. Such a subgroup consists
of participants who develop most consistently, information
that may be of interest for targeted interventions or further
research. For instance, in the empirical example given, a sub-
group of patients with CD4 cell counts around the mean could
be identified who developed fairly consistently. Researchers
who investigate the development of the CD4 cell counts under
a specific new treatment may recruit participants with similar
slopes, because a potential effect of the new treatment may be
most likely to be identified for this homogeneous subgroup.

Third, the model allows for an identification of covariates that
account for the observed heterogeneity and hence provides
more insight into the source of the heterogeneity. The infor-
mation about these covariates facilitates the identification of
subgroups with consistent growth patterns.

The results of the presented simulation study showed that
the inclusion of the mixture model allowed for a fairly un-
biased parameter estimation of the heteroscedastic variance
component under the condition of normally and nonnormally
distributed data. Some bias could be found under the Type
I error condition, that is, when the covariate did not explain
the heteroscedasticity. Type I error rates were not inflated
severely under any of the conditions though, and a decision
regarding the inclusion of covariates could be drawn reliably.
Regarding the decision on the appropriate number of latent
classes for the mixture model to account for nonnormality,
the BIC seemed to provide better results than the AIC. In
line with Nylund et al., (2007), the AIC preferred models
that were more complex. Further, it could be shown, that
a misspecification of the heteroscedasticity did not lead to
spurious prediction intervals by the HGM-R. The proposed
parametric model for the conditional variance was capable
of approximating different population models.

Besides the advantages of the implementation of the
HGM-R, some limitations need to be addressed. In the sim-
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430 BRANDT AND KLEIN

FIGURE 3 Growth rates for participants with low, medium, and high
initial CD4 cell counts. For the predicted growth rates factor scores for 10
participants were randomly drawn each from the lower, middle, and upper
part of the intercept factor’s distribution. Note the greater variance of the
slopes when g is high at time point 1 (the intercept).

ulation study, nonnormality of the indicator variables was
caused by the latent factor. In empirical settings, it cannot
be decided on statistical means if nonnormality of the indi-
cators is caused by latent factors or measurement residuals
(Molenaar, Dolan, & Verhelst, 2010). A decision can only
be made based on previous research or plausibility assump-
tions. In many situations, it seems more plausible to assume
that the latent factor is nonnormal but not the measurement
residual. Typically, measurement residuals are composites
of different unobserved independent variance sources, which
may in sum be normally distributed. Furthermore, if indica-
tor variables have high reliability then most of the variance
— and thus most of the nonnormality — is accounted for
by the latent factor. For situations where indicator variables
have low reliability, the recommendations inferred from our
simulation study should be interpreted with some caution.
Indicators with low reliability may involve further problems,
for example, measures lose their interpretation, which might
complicate the interpretation of effects between latent vari-
ables altogether.

In general, simulation studies can give only a limited in-
sight into the applicability of the model. Conditions that
are investigated should give insight in the performance of
the model particularly in situations in which the applied re-
searcher cannot decide upon the unbiasedness of the results
given his single data set. While some general assumptions
can and should be tested or controlled for by the applied
researcher—for example, measurement invariance over time,
reliability of the measures, the appropriateness of the aver-
age functional shape of the growth trajectories, or specific
situational effects—the consequences of nonnormality or a
misspecification of the modeled heteroscedasticity are in-
tractable for the applied researcher. Here, we provided some
guidelines that may help to decide in an empirical context if
the model results can be trusted.

Another important aspect concerns the interpretation of
the heterogeneity. If, for instance, ceiling effects occur in the
repeated measures—for example, as a result of a measure-

ment instrument with items that are too easy—the variance
of the slopes for participants with high initial scores is small,
while for participants with low initial scores this variance
may be large. As a consequence, the HGM-R (or analo-
gously, a GMM) would indicate a heterogeneity of the slope
variance. This heterogeneity, though, would not indicate the
actual heterogeneous growth process that the researcher is in-
terested in, but rather a facet of the measurement instrument.
Hence, the researcher should use measurement instruments
that do not exhibit strong ceiling effects over time in order to
avoid such artifactual heterogeneity.

Heterogeneity of growth processes can be induced by dif-
ferent sources. These may include (unobserved) subgroups
with distinct growth patterns, (unobserved) covariates that
influence the growth pattern and the variability of the growth
trajectories, or methodological aspects like ceiling effects in
the measures. A differentiation between these sources is com-
plicated and cannot be decided by statistical means solely, but
needs a thorough context-related interpretation. The HGM-R
provides a parsimonious model that gives an alternative de-
scription of the growth patterns in comparison to the GMM.
Both models can be adequate, but results need to be inspected
critically under the limitations of the models.
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APPENDIX A

Derivation of the Conditional Mean Vector and
Covariance Matrix of f c

The observed variable vector yi is given by

yi = �i(η0i , η1i)
′ + εi (16)

with

(
η0i

η1i

)
=
(

β00c

β10 + β11β00c

)
︸ ︷︷ ︸

β0

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β02 β11β02 + β12

1 β11

0 γ0 + γ1β00c

0 γ2 + γ1β02

0 γ1

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

′

︸ ︷︷ ︸
β1

·

⎛
⎜⎜⎜⎜⎜⎜⎝

wi
ζ0i

ζ2i

wiζ2i

ζ0i ζ2i

ζ3i

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
ξ i

.(17)

The conditional mean vector of yi given ζ2i , wi and c is
specified by

E[yi |ζ2i , wi, c] = �i(β0 + β1E[ξ i |ζ2i , wi, c])

+E[εi |ζ2i , wi, c]

(18)

where E[εi |ζ2i , wi, c] = 0 because the residuals εi are un-
correlated with ξ i and have mean zero within each class c.
Under the assumption that ζ0i is normally distributed within
each latent class, the conditional expectation E[ξ i |ζ2i , wi, c]
is given by (cf. Bohrnstedt & Goldberger, 1969 for the ex-
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pectations of product variables)

E[ξ i |ζ2i , wi, c] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E[wi |ζ2i , wi, c]

E[ζ0i |ζ2i , wi, c]

E[ζ2i |ζ2i , wi, c]

E[wiζ2i |ζ2i , wi, c]

E[ζ0iζ2i |ζ2i , wi, c]

E[ζ3i |ζ2i , wi, c]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

wi
0
ζ2i

wiζ2i

0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(19)

because ζ0i and ζ3i are uncorrelated withwi and ζ2i , and have
zero means within each class c. It follows that

E[yi |ζ2i , wi, c]

= �i

⎛
⎜⎝ β00c + β02wi

(β10 + β11β00c) + (β11β02 + β12)wi
+(γ0 + γ1β00c)ζ2i + (γ2 + γ1β02)wiζ2i

⎞
⎟⎠.

(20)

The conditional covariance matrix is specified by

Cov(yi |ζ2i , wi, c) = �i(β1Cov(ξ i |ζ2i , wi, c)β
′
1)�′

i

+Cov(εi |ζ2i , wi, c). (21)

The model implied conditional covariance matrix
Cov(ξ i |ζ2i , wi, c) (see variances and covariances for product
variables in Bohrnstedt & Goldberger, 1969) is given by

Cov(ξ i |ζ2i , wi, c) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0 ψ00c

0 0 0

0 0 0 0

0 ζ2ψ00c 0 0 ζ 2
2ψ00c

0 0 0 0 0 ψ33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (22)

under the same assumptions regarding ζ0i and ζ3i as stated
above.

Given the assumption that the residuals εi are uncorrelated
with the variable vector ξ i and have covariance matrix�, the
model implied conditional covariance matrix of yi is given
by

Cov(yi |ζ2i , wi , c) =

�i

(
ψ00c β11ψ00c + γ1ψ00cζ2i

β11ψ00c + γ1ψ00cζ2i β
2
11ψ00c + γ 2

1 ψ00cζ
2
2i + 2β11γ1ψ00cζ2i + ψ33

)

×�′
i +�. (23)

APPENDIX B

Mplus Syntax for the HGM-R

TITLE: HGM-R for nonnormal data with
2 latent classes
DATA: FILE = data.dat;
VARIABLE: NAMES = y1-y4 w;

CLASSES = c(2);
ANALYSIS: TYPE = RANDOM; TYPE = MIXTURE;

ALGORITHM = INTEGRATION; AL-
GORITHM = EMA;

STARTS = 50 20; STITERATIONS
= 40; PROCESSORS = 8;
MODEL: %OVERALL%

!linear slope
eta0 eta1 | y1@0 y2@1 y3@2 y4@3;
!specification of zeta2
zeta2 BY eta1*.1 (ga0);
zeta2@1;
[zeta2@0];
eta0 WITH zeta2@0;
w WITH zeta2@0;
!specification of latent product

terms
int1 | eta0 XWITH zeta2;
int2 | w XWITH zeta2;
!regression model
eta1 ON eta0 (b11)

w (b12)
int1 (ga1)
int2 (ga2);

eta0 ON w (b02);

!mixture model for eta0
%c#1%
[eta0*] (b00a);
eta0* (ps0a);
[eta1*] (b10);
eta1* (ps3);
[w*] (mw);
w* (vw);

%c#2%
[eta0*] (b00b);
eta0* (ps0b);
[eta1*] (b10);
eta1* (ps3);
[w*] (mw);
w* (vw);

model constraints: ga0>0;
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APPENDIX C

Model-Based Conditional Mean and Variance for
yti

The ad hoc prediction interval for ŷti (t > 1) given y1i and
wi is based on the conditional expectation E(yti |y1i , wi) and
the conditional variance V ar(yti |y1i , wi). For the observed
variable yti which is given by [cf. Equations (1), (2), and (4)]

yti = η0i + λtη1i + εti

= (β00 + λt (β10 + β11β00)) + (β02 + λt (β11β02 + β12))wi

+(1 + λtβ11)ζ0i + λt (γ0 + γ1β00)ζ2i

+λt (γ1β02 + γ2)wiζ2i + λtγ1ζ0iζ2i + λtζ3i + εti ,

(24)

the model implied conditional mean and variance are speci-
fied by

E(yti |y1i , wi) = βE[ξ i |y1i , wi] + E[εti |y1i , wi] (25)

V ar(yti |y1i , wi) = βCov(ξ i |y1i , wi)β
′

+V ar[εti |y1i , wi], (26)

with

β ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β00 + λt (β10 + β11β00)

β02 + λt (β11β02 + β12)

1 + λtβ11

λt (γ0 + γ1β00)

λt (γ1β02 + γ2)

λtγ1

λt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ξ i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
wi
ζ0i

ζ2i

wζ2i

ζ0iζ2i

ζ3i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (27)

In general, the conditional expectation and covariance ma-
trix for a vector y of dependent variables and a vector x
of independent variables can be expressed by unconditional
means and covariances (Rencher, 2002):

E[y|x] = E[y] +yx
−1
xx (x − E[x]) (28)

Cov(y|x) = yy −yx
−1
xx xy, (29)

where ·· are partitioned covariance matrices for the depen-
dent and independent variables. Hence, the conditional mean
and variance of ζ0i given y1i and wi is given by

β•
i = E(ζ0i |y1i , wi) = ψ00(y1i − β02wi − β00)

ψ00 + θ11
(30)

ψ• = V ar(ζ0i |y1i , wi) = ψ00θ11

ψ00 + θ11
(31)

with

β00 =
∑
c

πcβ00c (32)

ψ00 =
∑
c

πc(ψ00c + β2
00c) − β2

00 (33)

(cf. Bauer & Curran, 2003; McLachlan & Peel, 2000). Anal-
ogously, the conditional mean and variance of ζ0i within each
latent class is given by

β•
ic = E(ζ0i |y1i , wi, c) = ψ00c(y1i − β02wi − β00c)

ψ00c + θ11
(34)

ψ•
c = V ar(ζ0i |y1i , wi, c) = ψ00cθ11

ψ00c + θ11
. (35)

For the following, we define the conditional moments of the
mixture variable ζ0i by

κ•
i =

∑
c

πcβ
•
ic (36)

φ•
i =

∑
c

πc(ψ
•
c + (β•

ic)
2) − κ•

i . (37)

The conditional expectation of yti given y1i andwi is then
given by

E[yti |y1i , wi] = β00 + λt (β10 + β11β00) + (β02 + λt (β11β02

+β12))wi + (1 + λtβ11)β•
i (38)

because E[ξ i |y1i , wi] = (1, wi, β•
i , 0, 0, 0, 0)′ and

E[εti |y1i , wi] = 0 (for the derivation of expectation
values of product variables see Bohrnstedt & Goldberger,
1969).

For the conditional variance of yti , the conditional model
implied covariance matrix Cov(ξ i |y1i , wi) in Equation (26)
needs to be derived, which includes (conditional) variances
and covariances of the latent product terms (cf. Bohrnstedt
& Goldberger, 1969):

Cov(ξ i |y1i , wi )

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0 0

0 0 ψ•

0 0 0 1

0 0 0 wi w2
i

0 0 ν002 β
•
i + ν022 β

•
i wi + wiν022 (β•

i )2 + 2β•
i ν022 + ν0022

0 0 0 0 0 0 ψ33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(39)

where ν002, ν022, and ν0022 are conditional central third- and
fourth-order moments of the variables ζ0i and ζ2i given y1i

and wi . Due to the (potential) nonnormality of the latent
intercept, the central third-order moments may be unequal to
zero and need to be taken into account (the conditional central
moments that involve wi are all zero). Based on the class-
specific moments of the mixture components, an analytic
solution for the moments of the mixture variable can be
derived that is an approximation of the moments ν002, ν022,
and ν0022.
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In general, central third- and fourth-order moments of the
type νuuv and νuuvv are given by

νuuv = μuuv − μuuμv − 2μuvμu + 2μuμuμv (40)

νuuvv = μuuvv − 2μuuvμv − 2μuvvμu + μuuμ
2
v

+μvvμ2
u − 3μ2

uμ
2
v + 4μuvμuμv (41)

where μ·, μ··, μ···, and μ···· are noncentral first- to fourth-
order moments of the respective variables. Further, each kth
noncentral moment of mixture variables can be expressed as
a weighted sum of the kth noncentral class-specific moments
(McLachlan & Peel, 2000):

μ(k) =
C∗∑
c=1

πcμ
(k)
c . (42)

For the two relevant conditional central third-order moments,
the formulas in Equations (40) and (42) can be simplified un-
der the assumption of normally distributed variables within
each class and given E[ζ2i |y1i , wi, c] = E[ζ2i |y1i , wi] = 0,
V ar(ζ2i |y1i , wi, c) = V ar(ζ2i |y1i , wi) = 1 and
Cov(ζ2i , ζ0i |y1i , wi, c) = Cov(ζ2i , ζ0i |y1i , wi) = 0 (which
follow from the model specification in the model section):

ν002 = 0 (43)

ν022 =
∑
c

πcβ
•
ic − β•

i = κ•
i − β•

i , (44)

where the last equality in Equation (44) follows from Equa-
tion (36). For the relevant fourth-order moment, Equations
(41) and (42) lead to

ν0022 =
∑
c

πc(ψ
•
c + (β•

ic)
2) − 2κ•

i β
•
i + (β•

i )2

= φ•
i + (κ•

i − β•
i )2, (45)

where the last equality follows from Equation (37). The con-
ditional covariance matrix in Equation (39) then simplifies
to

Cov(ξ i |y1i , wi) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0 0

0 0 ψ•
0 0 0 1

0 0 0 wi w
2
i

0 0 0 κ•
i κ

•
i wi (κ•

i )2 + φ•
i

0 0 0 0 0 0 ψ33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(46)

Under the assumption that εti is uncorrelated with ξ i and
y1i , the conditional variance of yti given y1i and wi finally is
specified by

V (yti |y1i , wi) = (1 + λtβ11)2ψ• + (λt (γ0 + γ1β00))2

+(λt (γ1β02+γ2))2w2
i + (λtγ1)2((κ•

i )2+φ•
i )

+λ2
t ψ33 + 2λ2

t (γ0 + γ1β00)(γ1β02

+γ2)wi + 2λ2
t (γ0 + γ1β00)γ1κ

•
i

+2λ2
t (γ1β02 + γ2)γ1κ

•
i wi + θtt . (47)
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